Defect-related ferromagnetism in ultrathin metal-free g-C3N4 nanosheets.
نویسندگان
چکیده
Ultrathin metal-free g-C3N4 nanosheets with intrinsic room temperature ferromagnetism were synthesized by heating urea in an airtight container at different temperatures. Results indicate that the samples' saturation magnetization increases with the carbon defect concentration, revealing its carbon defect related ferromagnetism. Moreover, we further confirmed the defect induced ferromagnetic nature by ab initio calculations. It is believed that this finding highlights a new promising material toward realistic metal-free spintronic application.
منابع مشابه
Hydrogen dangling bonds induce ferromagnetism in two-dimensional metal-free graphitic-C3N4 nanosheets.
Ferromagnetic two-dimensional (2D) ultrathin nanosheets hold great promise for next generation electronics. Ferromagnetic metal-free materials that usually possess only an s/p electronic configuration with weak spin-orbit coupling and a large spin relaxation time, would play an important role in constructing future spintronic devices. However, the absence of an intrinsic spin ordering structure...
متن کاملHydrogen dangling bonds induce ferromagnetism in two-dimensional metal-free graphitic-C3N4 nanosheets† †Electronic supplementary information (ESI) available: Experimental and characterization. See DOI: 10.1039/c4sc02576h Click here for additional data file.
Ferromagnetic two-dimensional (2D) ultrathin nanosheets hold great promise for next generation electronics. Ferromagnetic metal-free materials that usually possess only an s/p electronic configuration with weak spin–orbit coupling and a large spin relaxation time, would play an important role in constructing future spintronic devices. However, the absence of an intrinsic spin ordering structure...
متن کاملAtomically Thin B doped g-C3N4 Nanosheets: High-Temperature Ferromagnetism and calculated Half-Metallicity
Since the graphitic carbon nitride (g-C4N3), which can be seen as C-doped graphitic-C3N4 (g-C3N4), was reported to display ferromagnetic ground state and intrinsic half-metallicity (Du et al., PRL,108,197207,2012), it has attracted numerous research interest to tune the electronic structure and magnetic properties of g-C3N4 due to their potential applications in spintronic devices. In this pape...
متن کاملA density functional study on the mechanical properties of metal-free two-dimensional polymer graphitic Carbon-Nitride
Successful synthesis of the stable metal-free two-dimensional polymer graphitic carbon-nitride with remarkable properties has made it as one of the most promising nanostructures in many novel nanodevices, especially photocatalytic ones. Understanding the mechanical properties of nanostructures is of crucial importance. Thus, this study employs density functional theory (DFT) to obtain the mecha...
متن کاملDoping effect of non-metal group in porous ultrathin g-C3N4 nanosheets towards synergistically improved photocatalytic hydrogen evolution.
Searching for effective approaches of accelerating charge separation and broadening optical absorption is critical for designing a high-performance photocatalytic system. Herein, a photocatalyst based on the non-metal group doped porous ultrathin g-C3N4 nanosheets (CNB NS) was prepared through a combined methodology of precursor reforming and thermal condensation. The synergistic effect of non-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 6 5 شماره
صفحات -
تاریخ انتشار 2014